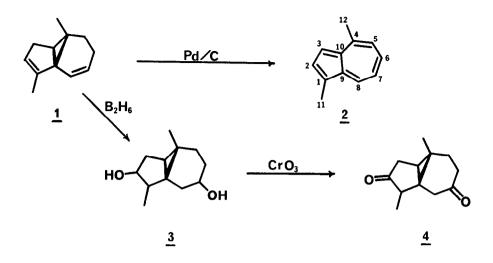
INFLATENE, AN ICHTHYOTOXIC C1, HYDROCARBON FROM THE STOLONIFERAN SOFT CORAL CLAVULARIA INFLATA VAR. LUZONIANA

Richard R. Izac and William Fenical* Institute of Marine Resources Scripps Institution of Oceanography La Jolla, California 92093

and


John M. Wright* Department of Chemistry University of California, San Diego La Jolla, California 92093

<u>Abstract</u>: A new tricyclic C_{12} hydrocarbon, inflatene (<u>1</u>), possessing unexpected ichthyotoxic properties, has been isolated as the major metabolite of the stoloniferan <u>Clavularia</u> inflata var. luzoniana. The structure of inflatene was secured by extensive FT-NMR studies with the natural product and several key derivatives.

Among the chemically-rich marine soft-corals,¹ those of the Order Stolonifera (Octocorallia, Cnidaria) represent a minor group in both species diversity and abundance. Several chemical investigations have been reported for members of this group, and in particular for Tubipora, <u>Pachyclavularia</u> and <u>Clavularia</u> species. Several sesquiterpenoids,² diterpenoids³ and novel prostanoids⁴ have been isolated, and more recently the structure of a C_{12} diketone was reported from Clavularia koellikeri.⁵ In this communication we wish to report the isolation and structure determination of a novel tricyclic hydrocarbon, inflatene (1), from the stoloniferan coral <u>C</u>. inflata var. luzoniana collected in Palau, Western Caroline Islands. Inflatene possesses an unprecedented tricyclo[5.3.0^{1,6}.0]decane ring system and shows unexpected ichthyotoxicity toward the Pacific damselfish <u>Pomacentrus</u> coeruleus (10 μ g/ml).⁶

Hexane extraction of the thawed aqueous sublimate obtained by lyophilizing frozen C. inflata var. <u>luzoniana</u> yielded large quantities of an odorous volatile oil (15.5 gm from 5 kg frozen animal) after careful removal of solvent. Purification of the oil by HPLC (silica gel, pentane) showed one major component which was isolated as a colorless volatile oil. The pure hydrocarbon <u>1</u> (12 g) showed $[a]_{D}$ +130⁰ (c 1.63, CHCl₃) and analyzed for $C_{12}H_{16}$ by both mass spectral and ^{13}C NMR methods. The ¹³C NMR characteristics of 1 showed the presence of two double bonds, one trisubstituted and the other disubstituted. Since inflatene possessed 5 degrees of unsaturation, the molecule was concluded to be tricyclic.⁷

After long periods of storage, inflatene samples were noted to develop faint blue colorations which suggested the conversion of $\underline{1}$ to azulene derivatives. Treatment of $\underline{1}$ with Pd/C in refluxing xylene yielded an intensely blue hydrocarbon 2, (20% overall yield) which analyzed for

 $C_{12}H_{12}$. Of the numerous dimethylazulene isomers, <u>2</u> was tentatively identified as 1,4dimethylazulene by comparison of its ¹H NMR features with those reported for authentic samples.⁸

		NMR Data for Inflatene $(\underline{1})$.				
C#		¹ H ^a		13 _C b		
	δ	m	J(Hz)	δ	m ^c	^Ј С-Н
1				140.3	s	
2	5.16	m		124.0	df	160
3	2.45 ~1.9	ddd m	(17.6,7.5,1.0)	31.6 ^e	t	129
4				27 .9 ^e	s g	
5	1.60	m		22.2	t	133
6	2.05	m		29.1	t	139
7	5.49	dåd	(9.8,8.0,2.0)	122.1	ď	160
8	6.12	ddd	(9.8,2.5,1.0)	128.1	df	154
9				42.4	s ^g	
10	1.90	d	(10) ^h	31.7	đ	163
11	1.72	dd	(2.0,1.0)	14.9 ^e	q	1 26 ^e
12	0.93	s		13.3 ^e	q	125 ^e

a. Run in CDCl₃ solution at 360 MHz with internal TMS. b. Run in CDCl₃ solution at 50.3 MHz with internal TMS. c. Multiplicities were determined by single frequency of f-resonance decoupling. d. Natural coupling constants were determined by gated-decoupling methods. e. Values may be interchanged. f. Conclusive assignments made by ${}^{1}\text{H}^{-13}\text{C}$ Cross Correlation Spectroscopy. g. Assignments made by ${}^{13}\text{C}[{}^{1}\text{H}]$ NOE measurements. h. Assignment made by Tl Inversion-Recovery measurements.

The ¹H and ¹³C NMR spectra of <u>1</u> initially provided little insight into the structure of <u>1</u>. The compound contained two methyl groups, one of which was a bridgehead methyl and the other a highly coupled (¹H spectrum) olefinic methyl. The disubstituted olefin was assigned as <u>Z</u> on the basis of a vicinal 9.8 Hz coupling, and the lack of additional coupling to the δ 6.12 proton (C8) suggested an adjacent quaternary center (C9). A gated-decoupling ¹³C NMR experiment with <u>1</u>, which provided natural J values, gave significant insight into the structure of inflatene. Although there were no high-field carbon or proton resonances, the unusually large J_{C-H} value of 163 Hz for the ¹³C doublet at 31.7 ppm, in conjunction with two higher-field singlet resonances (27.9 and 42.4 ppm), could be confidently interpreted to show the presence of a pentasubstituted cyclopropane ring.

Of the numerous structural possibilities which incorporated these data. structure 1 was confidently assigned based upon extensive ¹H and ¹³C NMR experimentation. Conventional ¹H NMR single frequency decoupling, in combination with ¹H-¹H 2D Cross-Correlation Spectroscopy (COSY)⁹ defined the constellations C11-C1-C2-C3-C10 and C5-C6-C7-C8. However, since C4 and C9 isolated this latter four carbon unit, the olef in could be placed at either C5-C6 or C7-C8. The solution to this problem was found using selective ¹³C[¹H] Difference NOE measurements.¹⁰ Irradiation (at ¹H freq.) of the bridgehead methyl (C12, δ 0.93) yielded a 50% enhancement of the ¹³C singlet at 27.9 ppm, thus establishing this resonance from C4. Subsequent irradiation of the olef in proton at δ 6.12 (the proton known to be adjacent to the quaternary center) produced a 45% enhancement of the other ¹³C singlet at 42.4 ppm. Since these irradiations enhanced different quaternary carbons, the <u>Z</u> disubstituted olef in must be at C7-C8 rather than C5-C6. Molecular models further showed that the C11 methyl and the C2 and C8 olef in protons were in close proximity in this arrangement. Irradiation of the C11 methyl (δ 1.72) showed proton NOE enhancements only to those protons (δ 5.17 and 6.12).

Confirmation of the structure of $\underline{1}$ was also obtained by the synthesis and spectral analysis of two derivatives. Standard hydroboration $(B_2H_6/THF/H_2O_2)$ yielded the diol $\underline{3}$, which via Jones oxidation was converted to the diketone $\underline{4}$. ¹H NMR analyses of these derivatives fully supported their structures.¹² As would be expected, the cyclopentanone and cyclohexanone carbonyl groups in $\underline{4}$ were found to result in IR absorptions at 1751 and 1720 cm⁻¹.

Inflatene was by far the major metabolite of this variety of <u>C</u>. <u>inflata</u>, which was devoid of the clavularane and rearranged dolabellane diterpenoids reported earlier from this source. Two very minor metabolites, a cembrene derivative¹³ and batyl alcohol, were also observed. Inflatene is obviously related biogenetically to a bicyclic C_{12} diene hydrocarbon recently isolated from an undescribed species of the soft coral <u>Cespitularia</u>.¹⁴

<u>Acknowledgements</u>. This research was supported by NOAA, Office of Sea Grant, under grant NA80AA-D-00120, and in part by the California State Resources Agency under project R/MP-22. The U.S. Government is authorized to produce and distribute reprints. We wish to thank Dr. J. Verseveldt for his identification of this Palau soft coral.

<u>References</u> and <u>Notes</u>

- Tursch, B., J.C. Braekman, D. Daloze and M. Kaisin. In "Marine Natural Products", P.J. Scheuer, editor, Academic Press, Inc., New York, Vol. II, Chapter 4 (1978).
- (a) Braekman, J.C., D. Daloze, A. Dupont, B. Tursch, J.P. Declercq, G. Germain and M. Van Meersche. <u>Tetrahedron</u>, 37, 179 (1981).
 (b) Izac, R.R., M.M. Bandurraga, J.M. Wasylyk, F.W. Dunn and W. Fenical. <u>Tetrahedron</u>, 38, 301 (1982).

- (a) Braekman, J.C., D. Daloze, R. Schubert, M. Albericci, B. Tursch and R. Karlsson. <u>Tetrahedron</u>, 34, 1551 (1978). (b) Bowden, B.F., J.C. Coll, S.J. Mitchell, C.L. Raston, G.J. Stokie and A.H. White. <u>Aust. J. Chem.</u>, 32, 2265 (1979). (c) Bowden, B.F., J.C. Braekman, J.C. Coll and S.J. Mitchell. <u>Aust. J. Chem.</u>, 33, 927 (1980).
- (a) Kobayashi, M., T. Yasuzawa, M. Yoshihara, H. Akutsu, Y. Kyogoku and I. Kitagawa. <u>Tetrahedron Lett.</u>, 23, 5331 (1982). (b) Iguchi, K., Y. Yamada, H. Kikuchi and Y. Tsukitani. <u>Tetrahedron Lett</u>., 24, 4433 (1983).
- 5. Endo, M., M. Nakagawa, Y. Hamamoto and T. Nakanishi. <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1983, 322, 980.
- 6. The tricyclo[5.3.0^{1,6}.0]decane component of inflatene has been observed in the hydrocarbon anastreptene, a sesquiterpenoid isolated from liverworts; see Andersen, N.H., Y. Ohta, A. Moore and C.-L.W. Tseng. <u>Tetrahedron</u>, 34, 41 (1978).
- 7. Inflatene showed the following additional spectral features: IR (film): 3070, 2930, 1640, 1430, 1370, 1180, 1155, 1115, 1074, 1042, 950, 849, 782 and 730 cm⁻¹; UV (hex): 218 nm ($\varepsilon = 6,600$); MS (70 ev): M⁺ m/z 160 (C₁₂H₁₆).
- 8. Llinas, J.-R., D. Roard, M. Derbesy and E.-J. Vincent. <u>Can. J</u>. <u>Chem.</u>, 53, 2911 (1975).
- 9. Bax, A. and R. Freeman. J. Mag. Res., 44, 542 (1981).
- (a) Seto, H., T. Sasaki, H. Yonehara and J. Uzawa. <u>Tetrahedron Lett.</u>, 923 (1978). (b) Kakinuma, K., N. Imamura, N. Ikekawa, H. Tanaka, S. Minami and S. Omura. <u>J. Am. Chem.</u> <u>Soc</u>., 102, 7493 (1980).
- 11. The C10 cyclopropane proton was not resolved in any of the ¹H NMR spectra taken of <u>1</u>. A T1 Inversion-Recovery experiment, with Tau values of 2.3 sec nulled all methyl and methylene protons and left only the methine protons displayed in the dispersion mode.
- 12. For diol 3: mp 117-118°; IR (CHCl₃): 3590, 3430, 3000, 2920, 2860, 1500, 1370, 1040 and 1020 cm⁻¹; MS (70 ev): M⁺ m/z = 196 (C₁₂H₂₀O₂); H NMR (360 MHz, CDCl₃): δ 3.78 (1 H, ddd, J = 7.7, 7.0, 5.9 Hz), 3.68 (1 H, dd, J = 7.0, 6.9 Hz), 1.85 (1 H, m), 1.74 (1 H, dd, J = 13.8, 5.0 Hz), 1.96 (1 H, dd, J = 7.0, 6.9 Hz), 1.85 (1 H, m), 1.74 (1 H, dd, J = 13.8, 6.6 Hz), 1.52 (2 H, m), 1.42 (1 H, m), 1.35 (1 H, m), 1.11 (3 H, d, J = 6.9 Hz), 1.04 (3 H, s), and 0.86 (1 H, d, J = 5.9 Hz). For diketone 4: oil; IR (CHCl₃): 2941, 1751, 1720, 1449, 1408, 1379, 1156 cm⁻¹; MS (70 ev): M⁺ m/z = 192 (C₁₂H₁₀O₂), M⁻CH₃ m/z = 177, M⁺-CO m/z = 164; H NMR (360 MHz, CDCl₃): δ 2.86 (1 H, d, J = 19 Hz), 2.78 (1 H, ddd, J = 19, 6, 2 Hz), 2.63 (1 H, d, J = 19 Hz), 1.9-2.4 (6 H, m), 1.53 (1 H, d, J = 6 Hz), 1.12 (3 H, d, J = 6.9 Hz), 1.02 (3 H, s).
- 13. The cembrane derivative observed in extracts of this soft coral was tentatively identified as 19(or 20)-acetoxy-4,5,8,9-diepoxycembra-1,3-diene.
- 14. Bowden, B.F., J.C. Coll and D.M. Tapiolas. <u>Aust. J.</u> <u>Chem</u>., 36, 211 (1983).

(Received in USA 20 December 1983)